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Abstract

Serial simulation is required to predict the behavior of an electrochemical system undergoing many processes. This is demonstrated

through the simulation of charge/open-circuit/discharge processes of a thin ®lm nickel hydroxide electrode. The numerical issues involved

in this kind of simulation are discussed. An ef®cient and robust procedure is presented. It can be easily used to achieve the serial simulation

of electrochemical processes, e.g., battery cycling, cyclic voltammetry etc. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Modeling of electrochemical systems usually yields large

sets of differential and algebraic equations (DAEs) or partial

differential and algebraic equations (PDAEs). Since PDAEs

can always be converted to DAEs by some approximation

methods, e.g., the method of lines (MOL) [1], only DAEs

will be discussed here. DAEs can be generally expressed in

an implicit form:

F�t; y; y0� � 0 (1)

where F; y; y0 2 Rn. A system of DAEs is characterized by

its index, which is defined as the minimum number of

differentiations to convert the DAEs into equivalent ODEs

[2±4]. ODEs can be regarded as special DAEs with index

equal to 0. DAEs with index higher than 1 are usually

difficult to solve and are under active research at present.

DAEs with index equal to 1 are normally encountered in the

modeling of electrochemical systems. They behave simi-

larly to stiff ODEs, and are generally solved with similar

implicit methods. One popular approach to solve index-1

DAEs is the backward differentiation formulae (BDF)

method, which has been implemented in many DAEs solvers

[2,3].

Simulating a single process of a physical system (i.e.,

solving one set of ODEs/DAEs) is straightforward. How-

ever, an electrochemical system (e.g., a battery) rarely

operates for one process only; instead, it usually undergoes

several different processes in series. To predict the corre-

sponding behavior, simulation of many processes consecu-

tively is needed, which has been researched in recent years

as the simulation of combined continuous/discrete processes

[4] and the simulation of hybrid systems [5]. This kind of

simulation is demonstrated here for a nickel hydroxide

electrode.

Fig. 1 presents a schematic diagram of a thin ®lm nickel

hydroxide electrode. Modeling of the electrode behavior

yields the following governing equations:
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and

j1 � j2 ÿ iapp � 0 (3c)
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where

j1 � i01
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The initial conditions are

y1�0 � x � l; t � 0� � 0:05 (5a)

y2�t � 0� � 0:40 V (5b)

In the above equations, y1 is the mole fraction of NiOOH

and y2 is the potential difference at the solid±liquid interface.

Parameter values are listed in Table 1. The value of iapp

varies for different processes, i.e., it has positive values,

zero, and negative values for charge, open-circuit, and

discharge processes, respectively. To solve the above model

equations, the MOL is used ®rst to convert PDAEs to DAEs,

i.e., the spatial derivatives in Eqs. (2) and (3) are approxi-

mated with three-point ®nite difference formulae on N

uniformly spaced nodes:
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(6c)

j1 � j2 ÿ iapp � 0 for i � N (6d)

where

Dx � l

N ÿ 1
(7)

The DAEs in Eq. (6) have N�1 time-dependent variables

where Nÿ2 of them (y1[i], 1<i<N) are differential variables

Nomenclature

DH� proton diffusion coefficient in the nickel active

material (cm2/s)

F Faraday's constant (96 487 C/eq.)

F differential algebraic equations

F(k) differential algebraic equations for Process k

g equations for discrete events

g(k) equations for discrete events for Process k

i index for discrete nodes

iapp applied current density on the nickel electrode

(A/cm2)

i01 exchange current density of the nickel reaction

(A/cm2)

i02 exchange current density of the oxygen

reaction (A/cm2)

j1 current density of the nickel reaction (A/cm2)

j2 current density of the oxygen reaction (A/cm2)

l thickness of the nickel active material (cm)

N number of nodes used in the spatial discretiza-

tion

pi interpolation polynomial for dependent vari-

able yi

R ideal gas constant (8.3143 J/mol/K)

Rn n-dimensional vector in real domain

t independent time variable (s)

t(k) starting time for Process k � 1 (s)

T temperature (K)

W molecular weight of Ni(OH)2 (g/mol)

x spatial coordinate across the film of the nickel

active material (cm)

y dependent variables in DAEs

y0 time derivatives of dependent variables in

DAEs

y1 mole fraction of NiOOH

y2 potential difference at the solid±liquid inter-

face (V)

Greek letters

feq,1 equilibrium potential of nickel reaction (V)

feq,2 equilibrium potential of oxygen reaction (V)

r density of the nickel active material (g/cm3)

Fig. 1. Schematic of a film nickel hydroxide electrode.

Table 1

Parameter values in the model of the nickel hydroxide electrode

Parameter Value

T 298.15 K

feq,1 0.420 V

feq,2 0.303 V

r 3.4 g/cm3

W 92.7 g/mol

l 1�10ÿ4 cm

DH� 5�10ÿ12 cm2/s

i01 1�10ÿ4 A/cm2

i02 1�10ÿ10 A/cm2
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and three of them (y1[1], y1[N] and y2) are algebraic

variables.

For the above model, the following processes need to

be simulated:

� Process 1: charge at iapp�1�10ÿ4 A/cm2 for 3600 s or

to the cutoff voltage 0.60 V;

� Process 2: open-circuit (iapp�0) for 1800 s or to the

cutoff voltage 0.30 V;

� Process 3: discharge at iapp�ÿ1�10ÿ4 A/cm2 for

3600 s or to the cutoff voltage 0.20 V;

� Process 4: open-circuit (iapp�0) for 1800 s or to the

cutoff voltage 0.30 V.

In addition to solving the governing equations given

above for the continuous processes, the simulation has to

handle the speci®ed termination conditions for each process,

which can be expressed as follows:

Process 1:

t ÿ t�0� ÿ 3600 � 0 (8a)

y2 ÿ 0:6 � 0 (8b)

Process 2:

t ÿ t�1� ÿ 1800 � 0 (9a)

y2 ÿ 0:3 � 0 (9b)

Process 3:

t ÿ t�2� ÿ 3600 � 0 (10a)

y2 ÿ 0:2 � 0 (10b)

Process 4:

t ÿ t�3� ÿ 1800 � 0 (11a)

y2 ÿ 0:3 � 0 (11b)

The termination speci®cations of a continuous process

have been called discrete events [4,5]. The equations of the

discrete events are independent of the governing equations

of continuous processes. In the above example, the discrete

events are given by the time speci®cation and also by the

cutoff value of potential y2 for each process. The occurrence

of a discrete event terminates the current process and starts

the next process.

2. Serial simulation of different processes

To simulate the processes given above in series, a coupled

system of DAEs and discrete events must be handled [4], as

shown in Fig. 2 and listed below:

F�1��t; y; y0� � 0; �t�0�; t�1�� (12a)

g�1��t; y� � 0; �t�0�; t�1�� (12b)

F�2��t; y; y0� � 0; �t�1�; t�2�� (12c)

g�2��t; y� � 0; �t�1�; t�2�� (12d)

..

.

F�n��t; y; y0� � 0; �t�nÿ1�; t�n�� (12e)

g�n��t; y� � 0; �t�nÿ1�; t�n�� (12f)

Several numerical issues need to be addressed to solve the

above system of equations [4]. The ®rst issue is the con-

sistent initialization of a continuous process. For ODEs, the

initialization setting is trivial, i.e., specifying the values of

dependent variables. However, for DAEs, the freedom of

initial settings is less than the number of equations, and

specifying a consistent initialization is usually a nontrivial

task. If inconsistent initialization values are provided, many

DAEs solvers will fail on the ®rst integration step [6,7]. To

achieve consistent initialization for DAEs, a widely used ad

hoc approach is to take an implicit Euler integration for a

very small time step without continuity constraint on the

algebraic variables. With this approach, the continuity of

differential variables is maintained, while algebraic vari-

ables may have jumps in their values, which is undesirable

when algebraic variables are more accurately known. In this

work, a ¯exible and robust initialization solver DAEIS [7]

has been utilized.

DAEIS is designed for index-1 DAEs with differential and

algebraic variables explicitly identi®ed, which is encoun-

tered frequently in the modeling of electrochemical systems,

Fig. 2. Schematic of the simulation of a series of processes.
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and can be expressed as

F�t; y1; y
0
1; y2� � 0 (13)

where y1 and y2 are vectors of differential and algebraic

variables, respectively. Supposing the DAEs in Eq. (13)

consist of n equations, p differential variables, and nÿp

algebraic variables, to determine uniquely all initial values

of the dependent variables and time derivatives, p degrees of

freedom exist. In DAEIS, the calculation of a consistent set

of initializations for Eq. (13) is treated as specifying p

variables of y1, y2 and y01 and solving Eq. (13) for the

remaining n variables of y1, y2 and y01, which is essentially

a nonlinear equation solving problem. DAEIS allows the

initial values of accurately known variables (including alge-

braic variables) to remain unchanged and the initial values

of other variables to be determined during the initialization

process.

Consistent initialization is not only needed for the ®rst

process. When switching between two different processes,

inconsistency of initial values naturally arises because the

values of dependent variables from the previous process

usually do not satisfy the governing equations of the sub-

sequent process. However, if there is no outside disturbance

that changes the differential variables (conservative quan-

tities), the consistent initial values at the beginning of the

succeeding process can be determined from the ending state

of the previous process by assuming the continuity of the

differential variables [4]. This can also be easily handled by

DAEIS [7].

The next issue of serial simulation is discrete event

detection during the integration of a continuous process.

For serial simulation, the ending of each continuous process

is due to the occurrence of one of two kinds of discrete

events: either explicit or implicit [4], as shown in Fig. 3. An

explicit event is speci®ed by the independent time variable

only, which is actually the normal working mode of DAEs

solvers (i.e., specifying the ending time). However, an

implicit event is based on some dependent variables, which

can only be determined during the integration process. The

detection of discrete events requires special handling in

solving DAEs, e.g., checking discrete event equations at

the end of each integration step. A sign change of the

residual evaluation of a discrete event equation represents

the occurrence of a discrete event. Normally, the event

location is determined by ®nding the root of interpolation

polynomials [2,4,8], i.e., for the dependent variables, poly-

nomials can be constructed on an interval [tkÿ1, tk] based on

the past solutions:

pi � f �t; ytk
i ; y

tkÿ1

i ; ytkÿ2

i ; . . .� (14)

The polynomial equations are then substituted into the event

definition equations (e.g., Eq. (8)). The earliest event can

then be located by combining the bisection method (deter-

mining the time interval of the event) and Newton's algo-

rithm (finding the accurate time location of the event) [2].

With the determined time location of the event, the values of

dependent variables at that moment can be easily obtained

from Eq. (14).

Few DAE solvers are capable of discrete event detection.

DASRT, an extension of the popular DAEs solver DASSL

[2], is used in this work. In DASRT, the continuous DAEs

and discrete events are de®ned in separate subroutines.

When an event is detected during the integration process,

DASRT will return to the calling program, indicate which

event occurred, and provide the state of dependent variables

when the event happened.

The last issue of serial simulation is ef®ciency and

robustness of numerical techniques. The modeling of elec-

Fig. 3. Schematic of implicit and explicit discrete events.
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trochemical systems usually produces hundreds or thou-

sands DAEs (e.g., after spatial discretization of PDAEs).

Solving these DAEs normally demands signi®cant compu-

tational power. In addition, an electrochemical system

may repeat the same operations for many times, e.g., a

secondary battery undergoes thousands of cycles of charge/

open-circuit/discharge processes. It can take days or

weeks to simulate if the solving ef®ciency is low, which

is just too time-consuming to be useful. To improve the

simulation ef®ciency, using fast hardware is a simple choice.

However, a more effective approach is using ef®cient

numerical techniques. It is common that a simulation

taking hours to ®nish by one technique (e.g., using an in-

house built implicit Euler integration code) only takes

minutes by another technique (e.g., using a variable order

variable step size solver such as DASSL) with essentially

the same results. Besides the ef®ciency, the robustness of

the numerical techniques is another critical factor in the

serial simulation. Coding a simulation program for large

DAEs is usually a nontrivial task and it is even harder for

serial simulations. Debugging the numerical code can be

terrible if the robustness of the numerical techniques utilized

is poor. Actually, simulation failures due to numerical

algorithms or solvers are usually impossible to detect and

correct. Therefore, a simple numerical code that lacks

sophisticated error controls and diagnoses must be avoided,

and high-quality professionally built numerical packages

should be used instead. There are many ef®cient and robust

solvers for DAEs, some of them are available free from

NETLIB (http://www.netlib.org). The algorithm of the

DAEs solver used in this work, DASRT, is based on the

BDF method up to the ®fth order. At each integration step,

DASRT uses the predictor polynomial to predict the solution

®rst and then uses the corrector polynomial to calculate the

®nal results. The low-order BDF method is used at the start

of integration with a small integration step size. After

enough solution points have been obtained, DASRT will

adjust the integration step size and BDF order based on the

error estimations. There are many details involved, which

can be found in [2].

One widely used ad hoc procedure for the serial simula-

tion is to use a ®xed time step integration of DAEs, and to

check if some conditions (discrete events) are triggered after

each integration step. If an event is detected, the current

process is terminated and the ®nal state of the process is used

to start the next process. However, it is not a rigorous

approach, i.e., numerical errors due to the inaccurate termi-

nation of the previous processes will accumulate and cause

erroneous simulation results for the later processes. Cer-

tainly, if the integration time step is chosen to be suf®ciently

small, e.g., 10ÿ5, the error due to discrete event detection of

this approach will be insigni®cant, but the simulation ef®-

ciency will be greatly affected.

With the consideration of above issues, a procedure for

the serial simulation of electrochemical processes is pro-

vided as follows:

1. Construct the governing equations for continuous

processes. If PDAEs are obtained, the MOL can be

used to transform the PDAEs to DAEs, e.g., using finite

difference approximations for spatial derivatives. For

each process, identify the corresponding discrete events

and put them in equation form. The physical constraints

at the switching between processes also need to be

determined, e.g., which conservation law will apply.

2. Use the initialization subroutine DAEIS to provide the

consistent initialization for the DAEs of a continuous

process. For the first process, initial values of more

accurately known variables are maintained and initial

values of other variables are determined to be consistent

with those variables. When switching between processes

without outside disturbances, values of differential

variables need to be maintained and values of algebraic

variables are determined to be consistent with differ-

ential variables.

3. Apply the DAEs solver with discrete event detection

DASRT to solve the DAEs. The continuous processes

are defined in one subroutine and the discrete events are

specified in another subroutine. When a discrete event is

detected by DASRT, the current process is terminated.

The state of the previous process at the discrete event is

used to provide the starting state for the subsequent

process.

Although the above procedure seems to be simple, the

complexity of the relevant numerical algorithms is hidden

inside the DAEIS and DASRT solvers, e.g., providing a

numerically determined Jacobian matrix. In fact, each solver

has thousands of lines of carefully constructed code to

guarantee the ef®ciency and robustness of involved algo-

rithms. To use the above procedure effectively, a user only

needs to become familiar with the calling protocols of the

DAEIS and DASRT solvers. No knowledge of the algo-

rithms used in these two solvers is required. Normally, it

takes several hundreds lines of code to solve a medium size

model in the combined continuous/discrete domain.

For the given example problem, less than 200 lines of

FORTRAN code were used, which is given in Appendix A. The

DAEs for continuous processes are given in the subroutine

DRES1. The discrete events are de®ned in the subroutine

GR1. The residue form of equations are used in both DRES1

and GR1. The working space, solver parameters, and equa-

tion de®nition subroutines are shared by DAEIS and

DASRT. The main subroutine iterates over processes and

cycles. It is obvious from the code that the details of solving

algorithms are hidden from the users by the two solvers,

which makes the usage of the solving procedure much

easier. In fact, the source code for the example problem

can be easily adapted to handle other similar simulations.

The results of the simulation are shown in Figs. 4±8. It is

obvious from Fig. 4 that Processes 2 and 4 are terminated by

the explicit discrete events of time speci®cations, and Pro-

cesses 1 and 3 are ended by the implicit discrete events of
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cutoff voltage speci®cations. Due to diffusion limitations,

there are nonuniform concentration distributions of NiOOH

during each process as shown in Figs. 5±8. Simulation of the

cycling like that shown for one cycle of the example

processes in Fig. 4 can be done for thousands of cycles.

From the results of the example problem, it is clear that

much more information can be obtained from the serial

simulation of multiple processes than from the simulation of

a single process. The advantage of the serial simulation is

also obvious: investigations that are impossible to conduct

with the simulation of a single process (e.g., the open-circuit

relaxation behavior after a charge process) can be easily

achieved. The DAEs resulting from the modeling of elec-

trochemical systems are usually more complex than the

given example; however, the same numerical solution pro-

cedure applies. In fact, the procedure has been utilized in the

simulation of several complex models of battery systems,

including a nickel-hydrogen cell model, a nickel-metal

hydride cell model, and a lithium-ion cell model, with

satisfactory results. One potential application of serial simu-

lation is to investigate failure mechanisms by simulating the

long time cycling behavior of an electrochemical system

with a model including degradation processes.

3. Conclusions

An electrochemical system usually operates under differ-

ent processes consecutively. To simulate the corresponding

behavior, serial simulation of many processes is required,

Fig. 4. Simulated potential behavior of the example problem.

Fig. 5. Simulated concentration profile of the example problem (x is a

dimensionless coordinate) for Process 1 (charge process).

Fig. 6. Simulated concentration profile of the example problem (x is a

dimensionless coordinate) for Process 2 (first open-circuit process).

Fig. 7. Simulated concentration profile of the example problem (x is a

dimensionless coordinate) for Process 3 (discharge process).

Fig. 8. Simulated concentration profile of the example problem (x is a

dimensionless coordinate) for Process 4 (second open-circuit process).
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which is demonstrated with the simulation of charge/open-

circuit/discharge processes of a nickel hydroxide electrode.

Three primary numerical issues need to be considered in

such a simulation: consistent initialization of a process,

accurate termination of a process, and ef®ciency and robust-

ness of numerical techniques. It is shown that, with two

numerical solvers, DAEIS and DASRT, serial simulation can

be easily achieved. Compared to the simulation of a single

process, the serial simulation of many processes allows more

challenging investigations of electrochemical systems.

Appendix A. Source code for solving the sample problem with DAEIS and DASRT
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